Part Number Hot Search : 
7C134 TFAM5601 FCX49507 FQI9N08L BXMF1011 1N4119 SKY777 DTD123T
Product Description
Full Text Search
 

To Download IRFB52N15DPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  notes  through  are on page 11 www.irf.com 1 06/25/02 irfb52n15d irfs52n15d irfsl52n15d smps mosfet hexfet ? power mosfet v dss r ds(on) max i d 150v 0.032 ? 60a d 2 pak irfs52n15d to-220ab irfb52n15d to-262 irfsl52n15d parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 60 i d @ t c = 100c continuous drain current, v gs @ 10v 43 a i dm pulsed drain current  240 p d @t a = 25c power dissipation  3.8 w p d @t c = 25c power dissipation 320 linear derating factor 2.1 w/c v gs gate-to-source voltage 30 v dv/dt peak diode recovery dv/dt  5.5 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torqe, 6-32 or m3 screw  10 lbfin (1.1nm) absolute maximum ratings  high frequency dc-dc converters benefits applications  low gate-to-drain charge to reduce switching losses  fully characterized capacitance including effective c oss to simplify design, (see app. note an1001)  fully characterized avalanche voltage and current thermal resistance parameter typ. max. units r jc junction-to-case ??? 0.47 r cs case-to-sink, flat, greased surface  0.50 ??? c/w r ja junction-to-ambient  ??? 62 r ja junction-to-ambient  ??? 40 pd - 94357a
irfb/irfs/irfsl52n15d 2 www.irf.com parameter min. typ. max. units conditions g fs forward transconductance 19 ??? ??? s v ds = 50v, i d = 36a q g total gate charge ??? 60 89 i d = 36a q gs gate-to-source charge ??? 18 27 nc v ds = 75v q gd gate-to-drain ("miller") charge ??? 28 42 v gs = 10v,  t d(on) turn-on delay time ??? 16 ??? v dd = 75v t r rise time ??? 47 ??? i d = 36a t d(off) turn-off delay time ??? 28 ??? r g = 2.5 ? t f fall time ??? 25 ??? v gs = 10v  c iss input capacitance ??? 2770 ??? v gs = 0v c oss output capacitance ??? 590 ??? v ds = 25v c rss reverse transfer capacitance ??? 110 ??? pf ? = 1.0mhz c oss output capacitance ??? 3940 ??? v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 260 ??? v gs = 0v, v ds = 120v, ? = 1.0mhz c oss eff. effective output capacitance ??? 550 ??? v gs = 0v, v ds = 0v to 120v  dynamic @ t j = 25c (unless otherwise specified) ns parameter typ. max. units e as single pulse avalanche energy  ??? 470 mj i ar avalanche current  ??? 36 a e ar repetitive avalanche energy  ??? 32 mj avalanche characteristics s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) ??? ??? showing the i sm pulsed source current integral reverse (body diode)  ??? ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.5 v t j = 25c, i s = 36a, v gs = 0v  t rr reverse recovery time ??? 140 210 ns t j = 25c, i f = 36a q rr reverse recoverycharge ??? 780 1170 nc di/dt = 100a/s   t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) diode characteristics 60 240 a static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 150 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.16 ??? v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance ??? ??? 0.032 ? v gs = 10v, i d = 36a  v gs(th) gate threshold voltage 3.0 ??? 5.0 v v ds = v gs , i d = 250a ??? ??? 25 a v ds = 150v, v gs = 0v ??? ??? 250 v ds = 120v, v gs = 0v, t j = 150c gate-to-source forward leakage ??? ??? 100 v gs = 30v gate-to-source reverse leakage ??? ??? -100 na v gs = -30v i gss i dss drain-to-source leakage current
irfb/irfs/irfsl52n15d www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t , junction tem p erature ( c ) r , drain-to-source on resistance (normalized) j ds(on)   v = i = gs d 10v 60a 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , drain-to-source current (a) 5.0v 300s pulse width tj = 25c vgs top 15v 12v 10v 8.0v 7.0v 6.0v 5.5v bottom 5.0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , drain-to-source current (a) 5.0v 300s pulse width tj = 175c vgs top 15v 12v 10v 8.0v 7.0v 6.0v 5.5v bottom 5.0v 5.0 7.0 9.0 11.0 13.0 15.0 v gs , gate-to-source voltage (v) 1.00 10.00 100.00 1000.00 i d , drain-to-source current ( ) t j = 25c t j = 175c v ds = 15v 300s pulse width
irfb/irfs/irfsl52n15d 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c, capacitance(pf) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 10203040506070 q g total gate char g e ( nc ) 0 2 4 6 8 10 12 v gs , gate-to-source voltage (v) v ds = 120v v ds = 75v i d = 36a 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-todrain voltage (v) 0.10 1.00 10.00 100.00 1000.00 i sd , reverse drain current (a) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , drain-to-source current (a) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec
irfb/irfs/irfsl52n15d www.irf.com 5 fig 10a. switching time test circuit v ds 90% 10% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms v ds pulse width 1 s duty factor 0.1 % r d v gs r g d.u.t. 10v + - v dd fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 175 0 10 20 30 40 50 60 70 t , case tem p erature ( c ) i , drain current (a) c d 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1  notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c  p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50  single pulse (thermal response)
irfb/irfs/irfsl52n15d 6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - 10 v fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v 25 50 75 100 125 150 175 0 180 360 540 720 900 startin g t j , junction tem p erature ( c ) e , single pulse avalanche energy (mj) as  i d top bottom 15a 26a 36a
irfb/irfs/irfsl52n15d www.irf.com 7 p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 14. for n-channel hexfet ? power mosfets * v gs = 5v for logic level devices peak diode recovery dv/dt test circuit   r g v dd ? dv/dt controlled by r g ? driver same type as d.u.t. ? i sd controlled by duty factor "d" ? d.u.t. - device under test d.u.t circuit layout considerations ? low stray inductance ? ground plane ? low leakage inductance current transformer  *
irfb/irfs/irfsl52n15d 8 www.irf.com lead assignments 1 - g a t e 2 - d r a in 3 - s o u r c e 4 - d r a in - b - 1.32 ( .05 2 ) 1.22 ( .04 8 ) 3x 0.55 ( .02 2 ) 0.46 ( .01 8 ) 2.92 ( .115 ) 2.64 ( .104 ) 4.69 ( .1 8 5 ) 4.20 ( .1 6 5 ) 3x 0.93 ( .0 3 7 ) 0.69 ( .0 2 7 ) 4.06 ( .160 ) 3.55 ( .140 ) 1.15 ( .04 5 ) m in 6.4 7 ( .2 55 ) 6.1 0 ( .2 40 ) 3.78 ( .149 ) 3.54 ( .139 ) - a - 10.54 ( .415 ) 10.29 ( .405 ) 2.87 ( .1 1 3 ) 2.62 ( .1 0 3 ) 15.24 ( .60 0 ) 14.84 ( .58 4 ) 14.09 ( .5 5 5 ) 13.47 ( .5 3 0 ) 3x 1.40 ( .0 5 5 ) 1.15 ( .0 4 5 ) 2.54 ( .10 0 ) 2x 0.36 ( .014 ) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 o utline conforms to jedec outline to-220ab. 2 c o n tr o llin g d im e n s io n : in c h 4 h e a t s in k & le a d m e a s u r e m e n t s d o n ot include burrs. to-220ab part marking information to-220ab package outline dimensions are shown in millimeters (inches) lot code 1789 as s emb le d on ww 19, 1997 in the assembly line "c" int ernat ional rect ifier logo assembly lot code part number dat e code year 7 = 1997 we e k 19 line c example: this is an irf1010
irfb/irfs/irfsl52n15d www.irf.com 9 d 2 pak package outline d 2 pak part marking information 10.16 (.400) re f. 6.47 (.255) 6.18 (.243) 2.61 (.103) 2.32 (.091) 8.89 (.350) r e f. - b - 1.32 (.052) 1.22 (.048) 2.79 (.110) 2.29 (.090) 1.39 (.055) 1.14 (.045) 5.28 (.208) 4.78 (.188) 4.69 (.185) 4.20 (.165) 10.54 (.415) 10.29 (.405) - a - 2 1 3 15.49 (.610) 14.73 (.580) 3x 0.93 (.037) 0.69 (.027) 5.08 (.200) 3x 1.40 (.055) 1.14 (.045) 1.78 (.070) 1.27 (.050) 1.40 (.055) m ax. notes: 1 dimensions after solder dip. 2 dimensioning & tolerancing per ansi y14.5m, 1982. 3 controlling dimension : inch. 4 heatsink & lead dimensions do not include burrs. 0.55 (.022) 0.46 (.018) 0.25 (.010) m b a m minimum recommended footprint 11.43 (.450) 8.89 (.350) 17.78 (.700) 3.81 (.150) 2.08 (.082) 2x lead assignments 1 - ga te 2 - d r ain 3 - s ou rc e 2.54 (.100) 2x lot code 8024 as s emble d on ww 02, 2000 in t he assembly line "l" assembly lot code int ernat ional rect ifier logo part number dat e code ye ar 0 = 2000 we e k 02 line l f 530s this is an irf530s with
irfb/irfs/irfsl52n15d 10 www.irf.com to-262 part marking information to-262 package outline example: this is an irl3103l lot code 1789 assembly part number dat e code we e k 1 9 line c lot code year 7 = 1997 as s emb led on ww 19, 1997 in the assembly line "c" logo rect ifier int ernat ional
irfb/irfs/irfsl52n15d www.irf.com 11  repetitive rating; pulse width limited by max. junction temperature. starting t j = 25c, l = 0.72mh r g = 25 ? , i as = 36a.  i sd 36a, di/dt 400a/s, v dd v (br)dss , t j 175c.  pulse width 300s; duty cycle 2%. notes:  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  this is only applied to to-220ab package.  this is applied to d 2 pak, when mounted on 1" square pcb (fr-4 or g-10 material ). for recommended footprint and soldering techniques refer to application note #an-994. d 2 pak tape & reel information 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. data and specifications subject to change without notice. this product has been designed and qualified for the automotive [q101] (irfb52n15d), & industrial (irfs/sl52n15d) market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 06/02 to-220 package is not recommended for surface mount application.


▲Up To Search▲   

 
Price & Availability of IRFB52N15DPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X